
Audit Report

contact@bitslab.xyz https://twitter.com/movebit_

DeagentAI Bridge

Fri Sep 12 2025

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

DeagentAI Bridge Audit Report

1 Executive Summary

1.1 Project Information

Description DeagentAI Bridge is a bridge from BSC to Sui.

Type Infrastructure, SocialFi

Auditors MoveBit

Timeline Tue Sep 09 2025 - Fri Sep 12 2025

Languages Move, Solidity

Platform Sui,BSC

Methods Architecture Review, Unit Testing, Manual Review

1/18

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

BBS bridge-bsc.sol ae4b181338983f510fb3ff2090e378
f3e2b0f760

BSU bridge-sui.move 89a46590bb353951f36f6da282cd7
2c847c5ea4e

2/18

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 7 4 3

Informational 2 0 2

Minor 3 2 1

Medium 2 2 0

Major 0 0 0

Critical 0 0 0

3/18

1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

4/18

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification(Optional)

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/18

2 Summary

This report has been commissioned by DeagentAI to identify any potential issues and
vulnerabilities in the source code of the DeagentAI Bridge smart contract, as well as any
contract dependencies that were not part of an officially recognized library. In this audit, we
have utilized various techniques, including manual code review and static analysis, to
identify potential vulnerabilities and security issues.

During the audit, we identified 7 issues of varying severity, listed below.

ID Title Severity Status

BBS-1 Cross-chain Bridge amount
Numeric Type Mismatch

Medium Fixed

BBS-2 Inconsistency Between The
Comment And The Actual
Implementation

Minor Fixed

BBS-3 BSC Bridge Contract Sui Address
Format Validation Missing

Minor Fixed

BBS-4 Bridge Contract Lacks Emergency
Pause Mechanism

Minor Acknowledged

BBS-5 Lack of Fund Refund Processing Informational Acknowledged

BBS-6 Useless signature Parameter Informational Acknowledged

BSU-1 Third Parties Can Forge Sui
TransferEvent

Medium Fixed

6/18

3 Participant Process

Here are the relevant actors with their respective abilities within the DeagentAI Bridge Smart
Contract :

user

call "bridge" in "bridge-bsc.sol" to start transfer token.

bridge-offchain-server

call "transfer_token" in "bridge-sui.move" to finish the cross-chain transfer.

7/18

4 Findings

BBS-1 Cross-chain Bridge amount Numeric Type Mismatch

Severity: Medium

Status: Fixed

Code Location:

bridge-bsc.sol#61;

bridge-sui.move#79

Descriptions:

There exists a numeric type mismatch issue between the BSC bridge contract and Sui bridge

contract. The BSC side bridge function uses uint256 type to handle token amounts, while

the Sui side transfer_token function uses u64 type. This type mismatch may cause large

cross-chain transfers to fail or produce unexpected behavior.

For most ERC20 tokens, u64::MAX is already a very large number (approximately 18.44

quadrillion), but certain tokens with extremely high precision or special designs might

exceed this limit.

Suggestion:

Add Numeric Range Check on BSC Side

Add amount <= type(uint64).max check in bridge function

Resolution:

This issue has been fixed. The client has adopted our suggestions.

8/18

BBS-2 Inconsistency Between The Comment And The Actual
Implementation

Severity: Minor

Status: Fixed

Code Location:

bridge-bsc.sol#103

Descriptions:

In the bridge-bsc.sol contract, there is an inconsistency between the comment and the

actual implementation, which could lead to a critical security issue:

// ... existing code ...// ... existing code ...
// Transfer tokens from user to zero address for burning// Transfer tokens from user to zero address for burning
tokentoken..safeTransferFromsafeTransferFrom((msgmsg..sendersender,, addressaddress((thisthis)),, amount amount));;
// ... existing code ...// ... existing code ...

Comment indicates tokens should be transferred to the zero address (address(0)) for

burning.

Actual implementation transfers tokens to the contract itself (address(this)).

Suggestion:

ERC20.safeTransferFrom cannot transfer tokens to address(0) , otherwise it will directly

revert. In real-world projects, if you want to simulate burning, it is common to transfer

tokens to an uncontrollable “dead address”. Tokens sent there can never be recovered,

which effectively achieves burning.

// Transfer tokens from user to a burn address (irrecoverable)// Transfer tokens from user to a burn address (irrecoverable)
tokentoken..safeTransferFromsafeTransferFrom((msgmsg..sendersender,, 0xdead0xdead,, amount amount));;

Or, if the design intention is indeed to retain tokens in the contract instead of burning, then

update the comment to reflect the actual implementation:

9/18

// Transfer tokens from user to this contract// Transfer tokens from user to this contract
tokentoken..safeTransferFromsafeTransferFrom((msgmsg..sendersender,, addressaddress((thisthis)),, amount amount));;

Resolution:

This issue has been fixed. The client has adopted our suggestions.

10/18

BBS-3 BSC Bridge Contract Sui Address Format Validation
Missing

Severity: Minor

Status: Fixed

Code Location:

bridge-bsc.sol#60

Descriptions:

In the bridge function of the bridge-bsc.sol contract, the to_addr parameter lacks Sui

address format validation. Currently, it only checks if the address is empty, but does not

validate whether the address conforms to Sui blockchain address format requirements,

which may cause tokens to be sent to invalid addresses. Sui Address Format

Requirements:

Sui addresses are typically 32-byte hexadecimal strings

Start with "0x"

Should be 66 characters long (0x + 64 hexadecimal characters)

Potential Risks:

Users may input incorrectly formatted addresses

Tokens may be sent to invalid addresses

Funds may be permanently lost

Suggestion:

Add Sui address format validation function

Resolution:

This issue has been fixed. The client has adopted our suggestions.

11/18

BBS-4 Bridge Contract Lacks Emergency Pause Mechanism

Severity: Minor

Status: Acknowledged

Code Location:

bridge-bsc.sol#1;

bridge-sui.move#1

Descriptions:

The bridge-bsc.sol and bridge-sui.move contracts completely lack an emergency pause

mechanism. The contract does not implement any pause functionality, administrator access

control, or emergency stop mechanisms, which means that once security vulnerabilities are

discovered, attacks occur, or abnormal situations arise, critical contract operations cannot

be immediately stopped.

Some scenarios

Need to pause immediately when smart contract vulnerabilities are discovered

Need to stop urgently when under hacker attacks

Need to pause services during system upgrades or maintenance

Need to stop operations due to regulatory requirements or legal disputes

Suggestion:

Add pause mechanism.

12/18

BBS-5 Lack of Fund Refund Processing

Severity: Informational

Status: Acknowledged

Code Location:

bridge-bsc.sol#60

Descriptions:

When a cross-chain operation on the BSC chain successfully executes (funds are transferred

from the user account to the contract), but the corresponding transfer operation on the SUI

chain fails, the system does not provide a fund return mechanism, resulting in the user's

funds being permanently lost.

Suggestion:

Adding an off-chain refund mechanism.

13/18

BBS-6 Useless signature Parameter

Severity: Informational

Status: Acknowledged

Code Location:

bridge-bsc.sol#64

Descriptions:

In the bridge function of the bridge-bsc.sol contract, the signature parameter is defined

but never validated or used. This parameter is only checked for emptiness and then directly

included in events without any security validation functionality, making it a useless

redundant parameter.

Suggestion:

Remove useless parameter.

14/18

BSU-1 Third Parties Can Forge Sui TransferEvent

Severity: Medium

Status: Fixed

Code Location:

bridge-sui.move#108

Descriptions:

Since the init_token_bridge function is public, any third party can create their own

StateObject object and then call the transfer_token function by adding funds, thereby

forging TransferEvent events.

And since "CoinType" is not in the "TranferEvent", attacks can even forge

TransferEvent events without any cost.

// Event fields that can be controlled by attacker// Event fields that can be controlled by attacker
event::emit(TransferEvent {event::emit(TransferEvent {
 recipient, // forgeablerecipient, // forgeable
 amount, // forgeableamount, // forgeable
 tx_hash, // forgeabletx_hash, // forgeable
 sender, // not forgeable (from tx_context::sender)sender, // not forgeable (from tx_context::sender)
 // it's better to add "CoinType" to the event !!!!!!// it's better to add "CoinType" to the event !!!!!!
});});

Attack Flow

1. Attacker calls init_token_bridge to create their own StateObject

2. Attacker adds token funds to the pool through add_funds

3. Attacker calls transfer_token function, controlling the following parameters:

recipient : arbitrary recipient address

amount : arbitrary amount (limited by pool balance)

15/18

tx_hash : arbitrary transaction hash string

4. The function emits a TransferEvent where only the sender field cannot be forged

(from tx_context::sender(ctx))

Impact

Monitoring Systems: Event-based monitoring systems may receive false data

Suggestion:

Always check TransferEvent.sender offchain.And add "CoinType" to the event

Resolution:

This issue has been fixed. The client has adopted our suggestions.

16/18

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

17/18

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

18/18

	975_page1.pdf
	975_page2.pdf

