
Audit Report

contact@bitslab.xyz https://twitter.com/movebit_

DeagentAI Token

Mon Sep 01 2025

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

DeagentAI Token Audit Report

1 Executive Summary

1.1 Project Information

Description DeAgentAI is the largest AI Agent infrastructure across Sui,
BSC, and BTC ecosystems, empowering AI Agents with
trustless autonomous decision-making capabilities on-chain.

Type Infrastructure, SocialFi

Auditors MoveBit

Timeline Wed Aug 27 2025 - Mon Sep 01 2025

Languages Solidity, Move

Platform BSC,Sui

Methods Architecture Review, Unit Testing, Manual Review

1/11

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

DTO deagentai/token/sui/deagent_toke
n.move

7ca5ef1b19aff8282dd567b096a23
8875aa2a29a

AIA deagentai/token/bsc/AIA.sol 775203705804a6c0aad96da27528f
b9a9a790a39

2/11

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 2 2 0

Informational 2 2 0

Minor 0 0 0

Medium 0 0 0

Major 0 0 0

Critical 0 0 0

3/11

1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

4/11

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification(Optional)

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/11

2 Summary

This report has been commissioned by DeagentAI to identify any potential issues and
vulnerabilities in the source code of the DeagentAI Token smart contract, as well as any
contract dependencies that were not part of an officially recognized library. In this audit, we
have utilized various techniques, including manual code review and static analysis, to
identify potential vulnerabilities and security issues.

During the audit, we identified 2 issues of varying severity, listed below.

ID Title Severity Status

AIA-1 Unnecessary Ownable()
Constructor Call in AIA Contract

Informational Fixed

DTO-1 batch_transfer Becomes
Inoperable If TreasuryCap is
Frozen

Informational Fixed

6/11

3 Participant Process

Here are the relevant actors with their respective abilities within the DeagentAI Token Smart
Contract :
User

User can transfer tokens to another address via transfer() / transferFrom() .

User can approve another address to spend tokens on their behalf via approve() .

Owner

Owner can transfer ownership to a new address via transferOwnership() .

7/11

4 Findings

AIA-1 Unnecessary Ownable() Constructor Call in AIA Contract

Severity: Informational

Status: Fixed

Code Location:

deagentai/token/bsc/AIA.sol#1

Descriptions:

The AIA contract inherits from OpenZeppelin's Ownable contract, but the ownership

functionality is not used anywhere in the contract. The explicit call to Ownable() in the

constructor is redundant, as the parent constructor is automatically invoked by Solidity

when not explicitly called. This adds unnecessary boilerplate and can slightly increase

contract bytecode size.

Suggestion:

Remove the explicit Ownable() call from the constructor:

constructorconstructor((string memory _namestring memory _name,, string memory _symbol string memory _symbol)) ERC20ERC20((_name_name,, _symbol _symbol)) {{
 _mint_mint((msgmsg..sendersender,, 200_000_000200_000_000 ** 1010 **** decimalsdecimals(())));;
}}

Optionally, if no owner-controlled functionality is needed, consider removing Ownable

inheritance entirely to simplify the contract.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

8/11

DTO-1 batch_transfer Becomes Inoperable If TreasuryCap is
Frozen

Severity: Informational

Status: Fixed

Code Location:

deagentai/token/sui/deagent_token.move#1

Descriptions:

The TreasuryCap in Sui is a capability that can be frozen. If the TreasuryCap for

DEAGENT_TOKEN is frozen, any subsequent calls to coin::mint_and_transfer will fail.

This means that if the TreasuryCap is frozen, the batch_transfer function will always revert

and be impossible to execute. This function, which is likely intended for important

operations like airdrops or reward distributions, becomes permanently disabled.

Suggestion:

The logic for managing the TreasuryCap should be carefully designed to prevent

unauthorized or accidental freezing. No direct code change in batch_transfer can prevent

this vulnerability; the solution lies in the operational security and access control

surrounding the TreasuryCap object.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

9/11

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

10/11

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

11/11

	955_page1.pdf
	955_page2.pdf

